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Abstract

We propose new multicomponent network codes based on block designs. They have the
prescribed subspace metric distance. This class of codes is a generalization of the Silva-Kötter-
Kschischang construction (SKK codes). Component constructions are chosen in such a manner
that subspace distance between components would be not less than subspace distance of each
component. A few examples are given.
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1 Introduction

Let Fq be a finite field of q elements. Let Fn
q be a fixed n-dimensional vector space over the field

Fq. Let P(n) be the set of all subspaces of Fn
q . A k-dimensional subspace V consists of qk vectors

of length n over the base field Fq. It can be considered as the row spanned subspace of a k × n
matrix M(V ) over Fq of full rank k. We refer to the matrix M(V ) as a basic generator matrix of
V .

For any two subspaces U and V in P(n), the distance function is defined by

dsub(U, V ) = dim(U ] V )− dim(U ∩ V ) =
= dimU + dimV − 2 dim(U ∩ V ) =
= 2 dim(U ] V )− dimU − dimV.

(1)

This distance function is known as the subspace distance.
Network coding is a new area of Information theory. A subspace approach for network coding

is introduced in [1]. The set P(n) is considered as the alphabet, or, as the signal space. A Source
represents k packets of length n as the basic generator matrix X of a subspace spanned by its
rows. The Source transmits the matrix X to Destination. Intermediate nodes fulfill random
transformations over rows of received matrix before retransmitting it to the next nodes. At last
the Destination gets the transformed matrix Y . It is possible to recover the row spanned subspace
of Y though the Destination does know intermediate transformations. If no corruption then the
row spanned subspaces of Y and X are identical. If corruptions may exist then we have to use
network coding.

A [n,M, dS ] code with prescribed distance dS and cardinalityM is a set of subspaces {V1, . . . , VM}
with basic matrices {X1, . . . , XM} such that min

i 6=j
dsub(Vi, Vj) = dS .

If all subspaces Vi are of identical dimension k, then a code is called a [n,M, dS , k] constant
dimension code.

The main problem is constructing [n,M, dS , k] and [n,M, dS ] codes.
Codes for network coding are proposed in several papers (see, [1] - [5]). The lifting construction

of Gabidulin‘s rank-metric code in the matrix representation was proposed by Wang et al. in [7]
several years earlier in the context of authentication codes. It was independently reopened for
network coding in [1]. Several constructions of [n,M, ds] codes are given in [2] and [3]. These
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codes are known now as Silva–Kötter–Kschischang codes (SKK codes, for brevity). A construction
based on linearized polynomials was generalized in [4]. A connection between constant-rank codes
and constant-dimension codes and new codes are presented in [5]. Use of the standard reduced
row echelon form of basic k × n generator matrices for subspaces is proposed in [6]. Each form
can be described by means of a n-vector with k ones. This vector is called the generator vector
of the form. It allows to introduce codes similar to SKK codes (the Ferrers diagram rank-metric
codes) though the general construction is unknown.

This paper is devoted to constructing new multicomponent codes with a specific subspace-
metric distance. Our goal is to increase code cardinality which is an important performance
for application background. Each component code consists of generator matrices with the same
reduced row echelon form. Any two subspaces of this component must have the subspace distance
dS or greater.

On the other hand, components must be chosen in such a manner that subspace distance be-
tween different components would be not less than subspace distance of each component. Therefore
the problem is to choose a set of the generator vectors. We propose to choose as sets block designs
with suitable parameters. Our examples show that such codes may outperform known codes.

2 Network codes over subspaces of standard form

Recall that SKK codes are described as the set of k × n basic matrices over Fq of the form

C =
{[
Ik M

]}
,

where Ik is the identity matrix of order k. A submatrix M ∈ M, where M is a matrix code
consisting of k × (n− k) matrices over Fq. Let dr(M) be rank-metric distance of this code.

Then subspace-metric distance d(C) = 2dr(M).
On the other hand, code matrices can be considered as matrices in reduced row echelon form

induced by the identity matrix Ik.
We consider below the general case of reduced row echelon form.

2.1 The reduced row echelon form of a subspace

Let X be a k × n generator matrix of a k-dimensional subspace. Apply to X the Gaussian
elimination procedure. Then we get the k × n matrix with rank k in reduced row echelon form.
The following conditions are satisfied [6]:

• The leading coefficient of a row is always to the right of the leading coefficient of the previous
row.

• All leadings coefficients are ones.

• All entries of a row before the leading coefficient are zeroes.

• Every leading coefficient is the only nonzero entry in its column.

Therefore the matrix in reduced row echelon form contains as entries k leading coefficients ”ones”
and related ”zeroes”. All the other entries are called ”free parameters”. Denote the set of free
parameters by a.

Assume that the leading coefficient of the first row appears at the position i1, of the second row
– at the position i2, of the last kth row – at the position ik. We have 1 ≤ i1 < i2 < · · · < ik ≤ n.
Integers i1, i2, . . . , ik define completely the structure of the generator matrix in reduced row
echelon form including the set of free parameters a.

The vector i = [i1 i2 . . . ik] is called the identifier (ID) of the reduced row echelon form.
Denote the corresponding generator matrix by X(i,a).
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Example 1. Let n = 6, k = 3, i = [i1 i2 i3] = [1 3 4]. Then a generator matrix X(i,a) of this
echelon form is as follows:

X(i,a) =

1 a1,1 0 0 a1,2 a1,3
0 0 1 0 a2,2 a2,3
0 0 0 1 a3,2 a3,3

 .
The matrix has 7 free parameters ai,j. Entries ai,j can be chosen arbitrarily in Fq. Therefore we
have q7 different 3-dimensional subspaces with the same ID i = [i1 i2 i3] = [1 3 4].

In general, let i = [i1 i2 . . . ik] be the ID of a reduced row echelon form. Calculate the
number of free parameters and the structure of the matrix. We observe in the first row, that there
exists between columns i1 and i2 exactly f1 = i2 − i1 − 1 parameters; between columns i2 and i3
exactly f2 = i3− i2−1 parameters; . . . ; between columns ik−1 and ik exactly fk−1 = ik− ik−1−1
parameters; after the column ik exactly fk = n− ik parameters. In common, the first row contains
n − k + 1 − i1 free parameters. Similarly, the second row contains between columns i2 and i3
exactly f2 = i3− i2−1 parameters; . . . ; between columns ik−1 and ik exactly fk−1 = ik− ik−1−1
parameters; after the column ik exactly fk = n − ik parameters. In common, the second row
contains n − k + 2 − i2 free parameters. Sequentially, we find that the (k − 1)th row contains
between columns ik−1 and ik exactly fk−1 = ik− ik−1− 1 parameters; after the column ik exactly
fk = n − ik parameters. In common, n − 1 − ik−1 free parameters. The last kth row contains
fk = n− ik free parameters. The whole number of free parameters is equal to

f =

k∑
i=1

fi = nk − (k − 1)k

2
− i1 − i2 − · · · − ik.

Consider the structure of free parameters. Let F (i,a) be the minimal submatrix of X(i,a),
containing all free parameters. In common position, it has the following echelon form:

F (i,a) =



a1,1 a1,2 a1,3 · · · a1,k−1 a1,k
0 a2,2 a2,3 · · · a2,k−1 a2,k
0 0 a3,3 · · · a3,k−1 a3,k
...

...
... · · ·

...
...

0 0 0 · · · ak−1,k−1 ak−1,k
0 0 0 · · · 0 ak,k


, (2)

where a1,1 is a 1× f1 block of free parameters, ai,2, i = 1, 2, are 1× f2 blocks of free parameters,
. . . , ai,k−1, i = 1, 2, . . . , k − 1, are 1 × fk−1 blocks of free parameters, ai,k, i = 1, 2, . . . , k, are
1× fk blocks of free parameters.

If fs = 0 for some s, then the corresponding column block must be deleted.

2.2 Codes over matrices with a given reduced row echelon form

Assume that for a given i there exists a subset of free parameters A such that the matrix code
F (i,a), a ∈ A has rank distance dr. Let code matrices be the set C(i) = {X(i,a), a ∈ A}. The
subspace distance dS(C) of this code is given by the formula

dS(C) = 2dr.

Proof is similar to proof for SKK codes [1].

For simplicity, consider the case ik 6= n and k ≤ n − k + 1 − i1. Then the size of F (i,a) is
k × n− k + 1− i1. It follows from Eq. (2) that this matrix contains

f = (k − 1)f1 + (k − 2)f2 + · · ·+ fk−1

zero entries, which are not free parameters.
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Theorem 1. If dr ≤ k, then there exists a matrix code F (i,a) with rank distance dr and cardinality

M = q(n−k+1−i1)(k−dr+1)−f .

Sketch of proof. Well known that without restrictions there exists a k×n−k+ 1− i1 matrix rank
metric code of cardinality M̃ = q(n−k+1−i1)(k−dr+1). Restrictions in the form of f zero entries
reduces cardinality to qf times. Hence M = M̃/qf = q(n−k+1−i1)(k−dr+1)−f .

3 Block design constructions

3.1 Constructions of multicomponent codes

Let C1,C2 ⊆ P(n) be codes of subspace-metric distance d1, d2, respectively. Codes are said to be
ρ-intersecting, if max

U∈C1, V ∈C1

dim(U ∩ V ) = ρ.

Denote by r1 = min(dim(U) : U ∈ C1), r2 = min(dim(V ) : V ∈ C2).

Lemma 1. Let component codes C1, C2 be ρ-intersecting codes. Let C = C1 ∪ C2 be the code
obtained as the union of component codes. We have:

1. The cardinality of C equals |C| = |C1|+ |C2|.

2. Subspace-metric distance of C equals d(C) = min(d1, d2, r1 + r2 − 2ρ).

Proof. The first statement is evident because codes C1, C2 have no common members. If U1, U2 ∈
C1, then d(U1, U2) ≥ d1. If V1, V2 ∈ C2, then d(V1, V2) ≥ d2. If U ∈ C1, V ∈ C2, then d(U, V ) =
dim(U) + dim(V )− 2 dim(U ∩ V ) ≥ r1 + r2 − 2ρ. This proofs the second statement.

Let dim = dimV = k, d1 = d2 = 2dr. The space distance between components is 2k− 2ρ. We
require 2k − 2ρ = 2dr, or, ρ = k − dr. Let the ID of C1 be i = [i1 i2 . . . ik]. Let the ID of C2 be
j = [j1 j2 . . . jk]. Then the number of common integers must be less than or equal to ρ = k− dr.
Hence we have to choose block designs with suitable parameters.

3.2 Block designs

3.3 Balanced incomplete block designs

Given a finite set N = {1, 2, . . . , n} and integers k, r, λ ≥ 1, we define a 2-design B to be a set
of k-element subsets of N, called blocks, such that the number r of blocks containing i in N is
independent of i, and the number λ of blocks containing given distinct points i and j in N is also
independent of the choices. Here n (the number of elements of N), b (the number of blocks), k, r,
and λ are the parameters of the design. In brief:

1. n – number of elements of N;

2. b – number of blocks;

3. r – number of blocks containing a given element of N;

4. k – number of elements in a block;

5. λ – number of blocks containing 2 (or more generally t) elements.

The design is called a (n, k, λ)-design or a (n, b, r, k, λ)-design.
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Example 2. Block design constructions
Let k = 3, n = 7, dr = 2. Define 7 identifiers (ID) of reduced row echelon forms (blocks) as follows:

B>1 =

1
2
3

 , B>2 =

1
4
5

 , B>3 =

1
6
7

 , B>4 =

2
4
6

 , B>5 =

2
5
7

 , B>6 =

3
4
7

 , B>7 =

3
5
6

 .
Each block meets another one in exactly λ = 1 point. Thus we have a balanced incomplete block
design with parameters n = b = 7, r = k = 3, λ = 1.
The number of matrices in each component is 256, 16, 1, 16, 2, 4, 2, respectively. The whole code of
subspace distance 4 contains 297 elements.

In general, blocks of a block design are used as identifiers of reduced row echelon forms.

3.4 Comparison with other codes

To compare our results with known results, we have borrowed the table from (Gadouleau M.,
and Yan Z.: Construction and Covering Properties of Constant-Dimension Codes. Proc. of the
2009 IEEE International Symposium on Information Theory (ISIT 2009), pp. 2221-2225. Nice,
France,) and add one extra column with cardinalities of new multicomponent codes based on block
designs.

Cardinalities of SKK codes, Skachek codes, Gadouleau–Yan codes, and multicom-
ponent codes in P(10) for 2 ≤ k ≤ 5

k dsub SKK Skachek Gadouleau−−Y an Multicomp

2 4 256 340 320 341

3 4 16384 16640 17408 18441
6 128 144 144 145

4 4 262144 262144 278544 283045
6 4096 4096 4112 4113
8 64 64 65 65

5 4 1048576 1048576 1056769 1060873
6 32768 32768 32769 32801
8 1024 1024 1025 1025
10 32 32 33 33

It follows from the table that multicomponent codes at least as good as other constructions,
sometimes better.

4 Conclusion

A family of multicomponent network codes based on block designs is presented. The parameters
are chosen under the following condition: any component subspace distance is equal to a subspace
distance between components. These codes are at least as good as other constructions ( sometimes
better).
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